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Abstract. Uncertainty plays a major role in Integrated Coastal
Zone Management (ICZM). A large part of this uncertainty is
connected to our lack of knowledge of the integrated function-
ing of the coastal system and to the increasing need to act in a
pro-active way. Increasingly, coastal managers are forced to
take decisions based on information which is surrounded by
uncertainties. Different types of uncertainty can be identified
and the role of uncertainty in decision making, scientific
uncertainty and model uncertainty in ICZM is discussed. The
issue of spatial variability, which is believed to be extremely
important in ICZM and represents a primary source of com-
plexity and uncertainty, is also briefly introduced. Some prin-
ciples for complex model building are described as an ap-
proach to handle, in a balanced way, the available data, infor-
mation, knowledge and experience. The practical method of
sensitivity analysis is then introduced as a method for a poste-
rior evaluation of uncertainty in simulation models. We con-
clude by emphasising the need for the definition of an analysis
plan in order to handle model uncertainty in a balanced way
during the decision making process.

Keywords: Coastal  management; Coastal system; Keystone
process; Model; Simulation.

Introduction

In order to carry out a successful Integrated Coastal
Zone Management (ICZM), a thorough understanding
of the functioning of the coastal system is required. This
can be achieved by studying the relevant processes in
geomorphology, ecology, coastal land use, and socio-
economy, and especially their interdependencies, within
the coastal zone. Currently there is a lack of understand-
ing of the integrated functioning of the coastal system.
Perhaps equally significant is that at present the elemen-
tary knowledge for a truly interdisciplinary approach is
also still lacking.

The development of integrated models can help to
investigate the processes and feedback mechanisms be-
tween geomorphology, ecology, coastal land use, and
socio-economy. The development and also the use of
these models is, however, surrounded by uncertainties.
These uncertainties may already originate in the initial
phases of the model building processes, for instance
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when considering the choice of key variables or key
processes. The search for key processes in the complex
issue of integrated assessment draws on Holling’s (1992)
argument that the dynamic behaviour of many ecosys-
tems can be explained by a few driving forces, namely
the keystone processes. Other matters of uncertainty
concern the choice of temporal and spatial aggregation
levels. One of the major difficulties in the linking of
different processes in integrated assessment and inte-
grated modelling is the linking of the available informa-
tion and the process knowledge both in space and time.
Different systems work along different time scales
(Costanza 1991), for example biology, economics and
geology work from seasons to millions of years. Spa-
tially, processes may display an equally large variabil-
ity. The linking of processes in space and time basically
corresponds to defining the mechanisms of downscaling
and upscaling of processes.

Uncertainty is also produced by the lack of knowl-
edge about the external influences that the coastal sys-
tem is subject to. Both natural and human-induced influ-
ences can affect the functioning of coastal systems.
There is always uncertainty surrounding the predictions
for change and of the rates of change, for instance in the
context of climatic change related forces (possible rela-
tive sea level change, change of storminess, etc.) and in
the context of future coastal land use settings and socio-
economic scenarios.

Other sources of uncertainty arise from the institu-
tional settings in which the Integrated Coastal Zone
Management action is undertaken. Such settings are
hardly ever optimal. There are many different actors
involved, who have very diverse interests, are distrib-
uted in space and act on different scales during the
various phases of problem analysis, planning, imple-
mentation and evaluation. The various actors further
complicate the problem of evaluating the modelling
results by imposing their subjective interpretations or
specific interests upon the model outputs eventually
presented by the coastal scientists.

All such sources of uncertainty are investigated here
with reference to the coastal area and Integrated Coastal
Zone Management. The aim is to make the model uti-
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lization more and more generally applicable, so that it
becomes less dependent on the specific model to which
it is applied. This can be achieved by introducing, and
using, principles and guidelines for systematic analysis
and communication of uncertainty.

The existence of uncertainty cannot be a justifica-
tion for not undertaking Integrated Coastal Zone Man-
agement. At the same time, however, representing, quali-
fying, and quantifying uncertainty is central to support a
proper and robust decision making. A model-based as-
sessment may use heuristic schemes to communicate
uncertainties, for instance by assigning degrees of con-
fidence to the main concluding statements that result
from the model runs. However, more systematic analy-
sis and communication of uncertainty should also be
possible by defining scenarios of change and undertak-
ing guided sensitivity analyses.

Types of uncertainty

On the sources of uncertainty

The literature provides an extensive overview of
different classifications of uncertainties. This is not
surprising, since the issue of uncertainty has invariably
been an important one in (physical) science (Morgan &
Henrion 1990). Science and the role of science, how-
ever, evolve with developments in society. The emer-
gence of large scale environmental problems and the
public concern over these issues has changed the tasks
for scientists.

Funtowicz & Ravetz (1990) introduce the term ‘post-
normal science’ which indicates the passing of Kuhnsian
‘normal science’ associated with puzzle-solving. In the
post-normal era, scientific problems are introduced
through policy issues. The issues of risk and environ-
ment impose new tasks on those scientists and experts
who provide information and advice on policy prob-
lems, the so-called policy related research (Funtowicz
& Ravetz 1990; Funtowicz & Ravetz 1991; Morgan &
Henrion 1990). Despite the progress in technology and
science we now have to cope with increasing uncertain-
ties surrounding complex environmental problems and
threats. Dealing with these uncertainties involves a new
challenge for scientists.

The relationship between policy and science has
changed over the years. In the past science provided the
‘hard’ (numerical) facts and handed them over to the
‘soft’ (interest driven) politics (Funtowicz & Ravetz
1990). Nowadays policy makers more often have to
make ‘hard’ decisions based on ‘soft’ scientific infor-
mation. Furthermore, the view of policy makers taking
over to make decisions after scientists have finished

their job of providing the facts, is no longer satisfactory.
If the policy making process is going to make adequate
use of science, a careful and iterative process of analysis
and interpretation is required.

Policies can no longer be assumed to be based on
scientific information which has a high degree of cer-
tainty (Funtowicz & Ravetz 1990). A common response
of decision makers and the public is to demand at least
the appearance of certainty. Problems arise, however,
when policy and decision makers do ask scientists for
‘certain’ information (Capobianco & Otter 1997). In
many cases policy makers expect straightforward infor-
mation as input into their decision making process. In
other words, the ‘politically correct’ way of presenting
model results to the end-user (e.g. decision-maker) is to
produce a single value answer. Thus, if a model is
calibrated and validated it is considered to be reliable
and to add an uncertainty interval would be equivalent
to doubting the results (Cunge 1998).

In this context, Funtowicz & Ravetz (1990) assert
that “our culture invests a quality of real truth in num-
bers…”. The reliance on numbers, which are not only
considered necessary, but also generally sufficient, can
easily lead to the conviction that all problems will be
solved with bigger and faster computers. But, bigger is
not necessarily better and small improvements will even-
tually require increasingly large efforts. The term ‘ap-
propriate models’ can be used (analogous to appropriate
technology) to indicate models in which the various
degrees of accuracy, reliability and uncertainty are tuned
to one another (Vreugdenhil 1997). The ‘tuning’ of the
various aspects determines the quality of the model.

A very general typology of uncertainties, based on
the division into a natural system and a human system, is
given by Rotmans et al. (1994). They distinguish:
• Scientific uncertainties: occurring in the environ-
mental system and which arise from the degree of
unpredictability of global environmental change proc-
esses and may be narrowed as a result of further scien-
tific research or more detailed and appropriate model-
ling;
• Social and economic uncertainties: occurring in the
human system and which arise from the degree of
unpredictability of future geopolitical, socio-economic
and demographic evolution and which are inherently
‘unknowable’ or in practice unpredictable.

The first statement, however, is in conflict with the
observation that non-linear systems can exhibit determin-
istic chaos and thus become inherently unpredictable.

Funtowicz & Ravetz (1990) distinguish between
three sorts of uncertainty, namely technical, methodo-
logical and epistemological uncertainty. Technical un-
certainty relates to inexactness of data or the spread of
data sets. Methodological uncertainty corresponds to
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the unreliability or the level of confidence to be placed
in a quantitative statement. Epistemological uncertainty
is connected to ignorance and represents all the different
gaps in our knowledge not encompassed in the previous
sorts of uncertainty.

Morgan & Henrion (1990) list three types of uncer-
tainty about which analysts should be explicit:
• uncertainty about technical, scientific, economic and
political quantities;
• uncertainty about the appropriate functional form of
technical, scientific, economic and political models;
• disagreements among experts about the value of
quantities or the functional form of models.

The US Environmental Protection Agency (Anon.
1996) discusses sources of uncertainty that arise during
the evaluation of information and conceptual model
development (combined under the subject of scenario
uncertainty), when evaluating the value of a parameter
(e.g. an environmental measurement), and during the
development and application of models. Many of the
sources of uncertainty discussed by EPA (Anon. 1996)

are relevant to characterising both exposure and envi-
ronmental effects. The sources and example strategies
for the analysis phase are shown in Table 1.

Each of the phases which can be discerned in Inte-
grated Coastal Zone Management (ICZM) involves a
certain degree of uncertainty related to the various ac-
tivities. In Fig. 1 a non-exhaustive overview is given of
possible uncertainties. The type of uncertainties we are
most interested in, are those related to problem recogni-
tion and analysis and to the planning activities where the
decision making process has its central moment. ICZM
may require sequential decisions to be undertaken and
methodologies to formulate and solve sequential deci-
sion making problems under uncertainty with continu-
ous decision and/or random variables are increasingly
being developed (Stonebraker & Kirkwood 1997).

We do not discuss here in detail the uncertainty for
all phases. We aim to make clear that a fully determinis-
tic approach cannot handle uncertainty related to the
various phases of a generic coastal zone management
task.

Solution

• Contact principal investigator or other study participants if objectives and methods of studies are unclear
• Document decisions made during the course of the assessment

• Verify that data sources have followed appropriate Quality Assurance/Quality Control (QA/QC) procedures

• Describe heterogeneity using point estimates (e.g. central tendency and high end) or by constructing probability
  or frequency distributions

• Differentiate from uncertainty due to lack of knowledge

• Use standard statistical methods to construct probability distributions or point estimates (e.g. confidence limits)
• Evaluate power of designed experiments to detect differences
• Consider taking additional data if sampling error is too large
• Verify location of samples or other spatial features

• Describe approaches used for bridging gaps and their rationales
• Promote the routine application of synoptic and long-term monitoring techniques
• Differentiate science-based judgements from policy-based judgements

• Beware of the problem of practical identifiability and of the problem of overcalibration
• Discuss key aggregations and model simplifications
• Compare model predictions with data collected in the system of interest

• Evaluate whether alternative models should be combined formally or treated separately
• Evaluate the practical applicability of empirical models in the context of interest

• Compare model predictions with data collected in the system of interest
• Evaluate their degree of balance

• Distinguish different classes of values
• Consider the possibility for values to change in time
• Update values regularly

• Consider the need to deal with ‘monetary’ and ‘non-monetary’ values
• Distinguish between ‘use’ and ‘non-use’ of natural resources

• Consider that the implementation of one decision on a certain spatial scale produces effects at larger as well as
shorter spatial scales

Source of uncertainty

Unclear communication

Descriptive errors

Variability and definition of
representative values

Uncertainty about a
quantity’s true value

Data gaps

Model structure uncertainty
(process models)

Uncertainty about a model’s
form (empirical models)

Uncertainty about model and
data integration

Uncertainty related to the
attribution of values

Uncertainty related to
intercomparison of values

Uncertainty related to scale
effects of decisions

Activity

Data
collection

System
analysis

Decision
making

Table 1. Sources of uncertainty with respect to planning phases (modified from EPA; Anon. 1996).
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Uncertainty in decision making

Risk can be defined as an exposure to a chance of
injury or loss and since risk involves chance or probabil-
ity it thus also needs to deal with uncertainty (Morgan &
Henrion 1990).

Risk assessment has become the central guiding
principle at environmental management agencies (see,
for instance the American EPA) but true uncertainty has
yet to be adequately incorporated into environmental
protection strategy. Even the most recent and advanced
initiatives for the adoption of environmental manage-
ment standards avoid tackling the problem of uncertain-
ties (Anon. 1995a, b). The reason why our current
approaches to environmental management and policy
making have difficulty in handling uncertainty may be
clear. The goal of decision makers is to make unambigu-
ous, defensible policy decisions. Often these decisions
are codified in the form of laws, regulations, and proce-
dures. While legislative language is often open to inter-
pretation, regulations are much easier to write and en-
force if they are stated in clear and absolutely certain
terms. But many scientific studies come to just conclu-
sions in terms of probability (or conditional probabili-
ties) because that is the nature of the phenomenon.

When trying to enforce the regulations after they have
been drafted, the problem of true uncertainty about the
impacts remains. As they are currently set up most envi-
ronmental regulations demand certainty and the absence
of certainty may lead to frustration and poor communica-
tion. Because of uncertainty, environmental issues can
often be manipulated by political and economic interest
groups. Uncertainty about global warming is perhaps the
most visible current example of this effect.

One way in which the environmental regulatory
community has begun to deal with the problem of true
uncertainty, is through the ‘precautionary principle’.
The principle states that rather than await certainty,
regulators should act in anticipation of any potential
environmental harm in order to prevent it. The precau-
tionary principle is so frequently invoked in interna-
tional environmental resolutions that it has come to be
seen by some as a basic normative principle of interna-
tional environmental law. The principle, however, of-
fers no guidance as to what precautionary measures
should be taken. It ‘implies the commitment of re-
sources now to safeguard against the potentially adverse
future outcomes of some decision’, but does not tell us
how many resources or which adverse future outcomes
are most important (Funtowicz et al. 1995).

Scientific uncertainty

Science treats uncertainty as a characteristic of all
information that must be honestly acknowledged and
communicated. Over the years scientists have devel-
oped increasingly sophisticated methods to measure and
communicate uncertainty arising from various causes.
Progress has been made in the sense that the occurrence
of many types of events can be predicted with a certain
degree of confidence. At the same time, however, sci-
ence has uncovered even more uncertainty, rather than
leading to the absolute precision. In this case the scien-
tific method can only set boundaries to the limits of our
knowledge (Capobianco 1998). It can define the bounda-
ries of what is known. For instance, science can tell us
the range of uncertainty about global warming and
relative sea level rise, and maybe something about the

Fig. 1. Uncertainties in coastal zone management.
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relative probabilities of different outcomes. In most
important cases, however, it cannot tell us which of the
possible outcomes will occur with any degree of accu-
racy. In that case the definition of ranges or limits can
already provide a very important result.

One of the principal reasons for the problems with
current methods of Integrated Coastal Zone Manage-
ment, and of Environmental Management in general, is
scientific uncertainty which can be defined here as the
uncertainty surrounding our integral understanding of
the coastal system. Especially in the context of sustain-
able development, uncertainty is mainly related to the
long time horizon and the economic-ecological interac-
tions (van den Bergh & Nijkamp 1991). Much uncer-
tainty emerges from unforeseeable qualitative changes
in a system, which are due to integral shifts in behav-
ioural patterns, exogenous impacts or changes in policy
institutions. Some problems with temporal scale in the
linking of human and biophysical processes concern the
discounting of the future, depreciating natural assets,
the existence of cumulative change (Lonergan &
Prudham 1994), etc.

The differences in handling temporal aspects in the
various disciplines becomes explicit when comparing
models of economic and ecological systems. Economic
data is usually aggregated over time, so that models are
developed to represent what happens during a calendar
year. In ecology, processes are simulated at short time
scales and treated entirely as recursive and consequently
high time resolution models are adopted (Bockstael
1996). In addition, ecologists are also interested in long
time horizons and especially the long-term implication
of human action (Bockstael et al. 1995). Economists,
however, tend to ignore the very long run because of the
inherent unpredictability of the future.

Similar difficulties are encountered when linking
processes operating at different spatial scales. Land
resources vary in space and this spatial variability repre-
sents an important source of complexity and uncertainty
(Costanza et al. 1993). In addition, space is one of the
neglected areas in economics (Nijkamp 1986; Armstrong
& Taylor 1995). Economists are not used to working
with the concept of space. When human behaviour is
studied or modelled, the focus is on informational flows
such as money and prices and (virtual) markets which
have no geographical dimensions. Natural scientists
concentrate on actual flows of physical quantities. Ecolo-
gists, for example, think in terms of water, biomass and
energy flows which all have spatial characteristics. Con-
sequently, ecologists have made great progress in the
development of spatial models while economists have
not (Bockstael et al. 1995).

There are various ways to account for spatial vari-
ability, each having its advantages and drawbacks. A

fundamental problem is how to estimate the value of a
certain piece of land, based on a set of existing samples
of nearby locations. The variation is not completely
random over space, but very often exhibits spatial de-
pendence. This implies that knowing the value of a land
characteristic at a certain point already provides infor-
mation about non-sampled points nearby.

Interest in quantifying spatial uncertainty has in-
creased with the increasing use of geographic informa-
tion systems and the development of modelling ap-
proaches that can be directly integrated with them
(Engelen et al. 1995). Major advances have been made
in general computer hardware and software capabilities,
which have facilitated far more sophisticated geographic
data bases and manipulation possibilities (Martin 1996).
Strategies include verifying the locations of remotely
sensed features, ensuring that the spatial resolution of
data or a method is commensurate with the needs of the
assessment, and using methods to describe and use the
spatial structure of data.

Model uncertainty

Models can be used to develop our understanding of
integrated coastal systems. We distinguish between dif-
ferent classes of models that can be developed and
applied to a variable extent in the phases of problem
analysis, planning, implementation, and evaluation (see
Fig. 1) of Integrated Coastal Zone Management. An
important aspect of the decision making process is risk
assessment, concerning the risk of not taking action as
well as that of taking action.

Conceptual model development, in the sense of build-
ing a qualitative, schematic model, may account for one
of the most important sources of uncertainty in a risk
assessment. A conceptual model may precede the build-
ing of a quantitative model or be a model in its own right.

If important relationships are missed or specified
incorrectly, risks could be seriously under- or overesti-
mated in the planning phase. Uncertainty can arise from
lack of knowledge on how the coastal system functions,
failing to identify and interrelate temporal and spatial
parameters, not describing influencing factors and driv-
ing forces, or not recognising secondary effects. In the
context of changes in coastal land use and land cover it
has been recognised that the interdependencies among
human behaviours, land cover and the state of the envi-
ronment should be studied and modelled (Rayner 1994).
There is considerable speculation about the importance
of various human factors as drivers of land use and they
are less systematically described and investigated than
the biogeophysical factors. Uncertainty also still re-
mains about some of the biogeophysical processes in-
volved (Veldkamp & Fresco 1996; Rayner 1994).
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Uncertainty associated with conceptual models can
be reduced by developing alternative conceptual models
for a particular assessment to explore possible relation-
ships. In cases where more than one conceptual model is
plausible, the risk assessor must decide whether it is
feasible to follow separate models through the analysis
phase or whether the models can be combined into a
better conceptual model. Developing models is an itera-
tive process and it is important to revisit, and if necessary
revise, conceptual models during risk assessments to
incorporate new information and re-check the rationale.
It is valuable to present conceptual models to risk manag-
ers to check for completeness and clarity and to ensure the
models address the key concerns that the managers have.

Sources of uncertainty that arise primarily during
the development and application of models originate
from the structure of process models and the description
of the relationship between two or more variables in
empirical models. Especially the choice for so called
‘key variables’ or ‘key processes’ is surrounded by
uncertainty. Uncertainty in process or empirical models
can be quantitatively estimated by comparing model
results to measurements taken in the system of interest
or by comparing the results obtained using different
model alternatives.

In the practical application of a generic coastal zone
model like that of Fig. 2 (Capobianco & Otter 1996),
links will be further detailed between all the subsystems
used to describe the coastal area. Links can be indicated
in qualitative terms, but also be represented by:
• One mathematical formula, describing the functional

dependencies of the link. Uncertainty here can be
such that various mathematical formulas can be
equally justified.

• A series of possible values, e.g.: the height of the
embankments, the monthly or yearly fluxes of water
required to irrigate or drain an agricultural field.
Uncertainty here can be reduced by more detailed or
more prolonged field data acquisition.

• A series of if-then conditions, which describe the
management practices as well as the regulatory sys-
tem and which are linked to possible expert systems
based approaches. Uncertainty here is often related
to the possible unknown or hidden practices as well
as to the problem of scales.

• The indication of a ‘submodel’, which can handle
downscale transitions leading to a higher resolution.
More than one submodel, with different para-
meterizations, can be applied here.

• Other, in the sense that we do not expect to have
solved all the possible situations, even with such a
general framework.
Dynamic simulation models can easily have a large

number of parameters. Each of these must be established

by calibration based on available data or derived from
‘first’ principles. A major problem is that very often
parameters are linked, while the possible interactions are
unknown. Also, many adjustments of parameters can
lead to the same final results. What is needed is insight
into the natural and human processes and their interac-
tions, many of which are poorly understood. Understand-
ing the interactions between natural and human processes
is indeed a fundamental aspect of integrated modelling.
The integration is however still faced with unresolvable
problems, partly because natural sciences and human
sciences are based on conflicting epistemologies.

Together with the rapid growth in integrated analy-
ses and the development of integrated models, the cri-
tique on these integrated approaches has also grown.
Especially the large scale integrated models, which use
scenarios to provide predictions or projections of the
future, are under fire. Sometimes a number of these
unverified models are linked to each other which leads
to speculations without an empirical check. Such an
approach is sometimes considered as being unscientific
(see also Funtowicz & Ravetz 1990).

Principles for complex model building

Considering the uncertainties in decision making, in
scientific knowledge, and especially in model build-
ing, it is worth following some fundamental principles
in the model building process to deal with these uncer-
tainties (see Table 2). We expect the application of such

Fig. 2. Generic conceptual model for a coastal system.
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principles to allow for balancing the available data, infor-
mation, knowledge and experience both during the model
building process and during the model utilization phase.

Table 2, which contains a description and short
explanation of the principles of complex model build-
ing, is followed by some background information about
each principle.

The principle of balance recalls the need to consider
forcing factors, processes, and output in their relation.
Dealing with integrated modelling of complex environ-
mental systems, it would be extremely inefficient and
potentially dangerous to look at them in a completely
independent way, simply because they are never fully
independent. This also implies that there should be a
balance between available data and modelled processes,
starting from the consideration that both data and mod-
els are just a limited representation of reality. Cunge
(1998) work, along this line of thinking.

The principle of indeterminacy introduces some con-
ceptual limitations to the type of scale transitions that
can be resolved in practical applications. There are
limits to the resolution that can be achieved for certain
processes in the real world. The difficulty we are facing
is the quantitative determination (even if expressed in a
fuzzy way) of such limits (Capobianco 1998).

The principle of parsimony represents, in practice, a
way to prioritize the selection of possible theories or

models. This is extremely important especially for those
situations where different parameter sets produce the
same observable response. The more parameters there
are in a model, the easier it could be to fit a given set of
‘calibration data’. On the other hand a large parameter
set could also result in a greater uncertainty and a larger
sensitivity of the model output to variations of the input.

The principle of complexity can be considered as a
corollary to the principle of parsimony. In practice, if
the occurrence of a feature is a recognised character of
the system under given conditions, it is easier to de-
scribe its behaviour rather than try to describe its forma-
tion and its behaviour together. Practically speaking
such a principle is being implicitly used in theoretical
morphodynamics to describe the occurrence of morpho-
logical patterns (e.g. Hulscher et al. 1993).

The principle of uncertainty invariance is extremely
useful while trying to build integrated models when
models for non-integrated processes already exist. In
other words, if the aim is to keep information, every
action is justified if it does not increase uncertainty.

Sensitivity analyses

Integrated modelling can be achieved by setting up a
problem specific model in an intrinsically integrative

Table 2. Principles for complex model building.

Principle

The principle of
balance

The principle of
indeterminacy

The principle of
parsimony

The principle of
complexity

The principle of
uncertainty
invariance

Description

The available knowledge and representa-
tion of forcings, processes & output must
be compatible.

We have to accept that there are aspects of
the forcings, processes & output that can-
not be determined on a certain time and
space scale.

The number of unknown parameters must
be kept at the minimum possible to repro-
duce the forcings, processes and output.

Complexity can only be handled in a sim-
ple way.

When transforming a system, the amount
of information in the resulting system should
be as close as possible to the original.

Explanation

They should not be ‘unrealistically’ unbalanced. Particularly the problem of balancing
available information with model complexity should be handled here. Nevertheless, at
same time it is important to take into account the possible utilisation of new technologies
and methodologies, such as the use of remote sensing or radiometric analysis techniques
to quantify processes that could not be otherwise detected.

In quantum physics the principle recognises that, on the atomic level, any measuring
process involves energy which by necessity interferes with the energy measured. This is
something that we cannot avoid and we just must accept. The practical problem consists
in the identification of the balance between processes on certain scales and observables
on the same scales.

In such a way we can aim to understand the dynamics and not introduce useless and
dangerous mechanisms of complication. In cybernetics and systems science1  this is also
known as Occam’s Razor: ‘one should not increase, beyond what is necessary, the
number of entities required to explain anything’.

This principle is connected to the Principle of parsimony. We should aim to handle the
emerging simple features rather than reproduce the complex, potentially chaotic, dy-
namics. We would end into other complex and chaotic dynamics.

In other words, when transforming or translating a system or a problem formulation from
one representation to another, we should aim at neither gaining nor losing any informa-
tion. This can, of course, be difficult to achieve if uncertainty and information are
represented in different ways in the different representation frames.

1In cybernetics and systems science the principle of parsimony can be related to the principle of uncertainty maximization in inductive reasoning (use all but
not more of the available information) and the principle of uncertainty minimisation in deductive reasoning (lose as little information as possible).
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way. More often, however, integrated modelling of com-
plex coastal systems is attained by linking formal disci-
plinary models. In dealing with the integration of differ-
ent formal model structures, the evaluation of sensitiv-
ity of model outputs is essential for the quantification of
uncertainty.

Sensitivity analysis can be used to evaluate how
model output changes with changes in input variables,
and uncertainty propagation can be analysed to examine
how uncertainty in individual parameters can affect the
overall uncertainty of the assessment. The availability
of software for Monte Carlo analysis1  has greatly in-
creased the use of probabilistic methods (see Meeuwissen
1996, for a formal treatment of the problem). Other
methods (such as for example fuzzy mathematics and
Bayesian methodologies) are available, but have not yet
been extensively applied to ecological risk assessment.
No matter what technique is used, all the sources of
uncertainty discussed above should be addressed.

Simulation modelling requires a large number of
model parameters (calibration values) and input data.
An important issue in modelling is the sensitivity of the
model to variations in parameters or data. Sensitivity
analysis allows us to see where the model is most
sensitive, thus on which aspects the calibration and
modelling efforts should be concentrated. The basic
method for sensitivity analysis requires the parameter to
be varied in some predictable way, subsequently the
model is run and the output recorded.

Sensitivity analysis is a very powerful and flexible
technique. It is applicable to variables with and without
known probability distributions (i.e., frequency distri-
butions are acceptable). Without modern computers it
would be impossible. Some tricky points are establish-
ing the distributions of the input variables, designing a
sampling strategy that will give reliable results in a
reasonable number of simulations (typically in the order
of 1000), making sure we have examined enough
simulations, quantifying the true distribution of the out-
put errors.

Kinzelbach & Kunstmann (1998) discuss the quanti-
fication of uncertainty arising from the imperfect knowl-
edge of the input parameters for groundwater flow and
transport models. They recall computationally efficient
approaches such as Gaussian Error Propagation and the
First Order Second Moment technique (FOSM). Gener-

ally speaking, the more information is available about the
model formulation and the more it is possible to work
analytically on the linearized system, the more efficient
the process of sensitivity analysis turns out to be.

Non-linearity represents both a problem and an op-
portunity. Non-linear behaviour typically occurs around
‘working points’ or ‘attractors’. Around given working
points the evolution of the system and the model output
may be relatively insensitive to variations of certain
inputs or parameters until a certain ‘threshold’ is reached
and the transition from one attractor state to another is
achieved. Such ‘thresholds’ prevent sensitivity to cer-
tain inputs or to certain parameters, but at the same time
they may cause large variations to occur from small
modifications of the inputs if the working point is at the
edge of rapid transition (catastrophic behaviour). These
are important aspects in a sensitivity analysis and di-
rectly connected to the issue of risk assessment in envi-
ronmental management (i.e. the system can be relatively
insensitive to certain actions but highly sensitive to
certain other actions that cause a transition to occur).

Analysis plan in the decision making process

In the decision making process, ambiguities, errors,
and disagreements will occur, all of which contribute to
uncertainty. Wherever possible, these sources of uncer-
tainty should be eliminated through better planning. Not
all uncertainty can be eliminated, and therefore a clear
description of the nature of the uncertainties should be
made from the initial steps of problem analysis on-
wards. Problem analysis should be considered as a
formal process for generating and evaluating prelimi-
nary questions about why environmental effects have
occurred, or may occur, as a result of natural forces as
well as human activities.

The problem analysis phase, being the first stage of
an environmental risk assessment, provides the founda-
tion on which the entire assessment depends. Therefore,
it is important to acknowledge and communicate data,
information, and knowledge gaps. Any deficiencies in
problem analysis will compromise all subsequent work
on the uncertainty evaluation and risk assessment.
At the end of the problem analysis phase there are three
products that determine its success:
• adequate reflection of management goals and the

environmental system they represent;
• conceptual models that describe key relationships

between sources of impact or disturbance and the
management goals;

• an analysis plan (to drive model building, sensitivity
analysis, and decision making).

1Stochastic modelling by Monte Carlo simulation can be used to asses
error propagation through the model and to identify the distribution
function of the outcome of an integrated model that results from the
distribution functions of the input data, the model parameters and the
model relations. Due to its resource consuming character and due to
lack of information on the distribution functions of all individual
model constituents, Monte Carlo simulation is not common practice.
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Essential in the development of these products is the
effective integration and evaluation of the available infor-
mation and knowledge. An analysis plan can be a final
stage of problem analysis, particularly in the case of
complex assessments. The analysis plan can also deline-
ate the assessment design, data needs, measures, and
methods for conducting the analysis phase of the risk
assessment. It may be relatively brief or extensive de-
pending on the nature of the assessment. Furthermore it
includes the most important pathways and relationships
identified during the problem analysis phase and which
will be pursued further. An important issue for the risk
assessor is to describe what will be done and, in particu-
lar, what will not be done. Another concern is determin-
ing the level of confidence needed for the management
decision relative to the confidence that can be expected
from an analysis, in order to determine data needs. When
new data are needed to conduct analyses, the feasibility of
obtaining the data should be taken into account.

In situations where data are few and new data cannot
be collected, it should be possible to combine existing
data with extrapolation models so that alternative data
sources may be used. This allows the use of data from
other locations or on other organisms where similar
problems exist and data are available. When using data
that require extrapolation, it is important to identify the
source of the data, justify the extrapolation method and
discuss major uncertainties apparent at this point.

Where data are not available, recommendations for
new data collection should be part of the problem analy-
sis. An iterative approach to the risk assessment may be
selected to provide an opportunity for early manage-
ment decisions using newly available data. A decision
to conduct a new iteration is based on the results of any
previous iteration and proceeds using new data col-
lected as specified in the analysis plan. When new data
collection cannot be obtained, pathways that cannot be
assessed are a source of uncertainty and should be
described in the analysis plan.

Conclusion

We have discussed the problem of dealing with uncer-
tainty in decision making, with scientific uncertainty, and
with model uncertainty in Integrated Coastal Zone Man-
agement. We can conclude that the knowledge and the
understanding of the (interacting) processes in the coastal
zone is incomplete and characterised by large uncertain-
ties and limits to predictability. The uncertainties affect
the estimates of future states of key variables and the
future behaviour of system constituents. Some of these
uncertainties are both potentially reducible, for instance
when coming from incomplete information, incomplete

understanding or lack of quality in data and models.
Others are probably irreducible, coming from un-
deterministic system elements, practical unpredictability
of chaotic system components, limits to our ability to
know, understand and handle complexity.

Uncertainty evaluation is an ongoing theme through-
out the various phases of the Coastal Zone Management
Task. The objective is to describe, and, where possible,
quantify what is known and not known about exposure
and effects in the coastal system of interest. Uncertainty
analyses increase credibility by explicitly describing the
magnitude and direction of uncertainties.

It is important to discriminate between the poten-
tially solvable and the currently unsolvable uncertain-
ties. Coastal management has to be robust towards the
currently unsolvable uncertainties, whereas adequate
research programs should be designed to reduce the
potentially solvable uncertainties. Further, the method-
ology has the potential to assess the quality of model
output and to identify the parts of the model whose
individual lack of quality contributes the most to the
overall lack of quality. The latter information is very
useful for setting research priorities.

A set of principles for complex model building was
introduced which is believed is helpful in dealing with
uncertainty. Particular attention is given to the aspect of
balancing available information with model complex-
ity. Complexity can only be handled in a simple way and
therefore we aim to fully understand and be able to
reproduce the emerging simple features. ‘As the com-
plexity of a system increases, our ability to make a
precise and yet significative statement about its behav-
iour diminishes until a threshold is reached beyond
which precision and significance (or relevance) become
almost mutually exclusive characteristics’ (Zadeh 1973).

We conclude by underlining the need for the defini-
tion of an analysis plan in order to handle model uncer-
tainty in the decision making process.
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